"GaAs PHEMT and InP HEMT MMIC Requirements for Satellite Based Communications Systems"

نویسندگان

  • M. J. Delaney
  • R. C. Wong
چکیده

Traditionally a majority of the commercial satellite communications systems have been fixed repeaters at C-band and Ku-band. The satellite industry is presently undergoing significant changes in the types of systems that are being fielded. New low earth orbit and geo stationary mobile systems have large numbers of flexible beams at either L-band or S-band through the use of large phased array antennas. On the other end of the spectrum new families of Kaband satellite systems are utilizing either multibeam or phased array antennas for large numbers of spot beams and are moving to provide broadband capability. At the higher end of the spectrum traditionally reserved for government communications systems commercial satellite operators have filed for use of V-band frequencies. All of these new applications means that satellite manufactures are going to be using ever increasing quantities of MMIC devices at a much broader range of frequencies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0.1 μm InP HEMT MMIC Fabrication on 100 mm Wafers for Low Cost, High Performance Millimeter-Wave Applications

Northrop Grumman Space Technology (NGST) has recently initiated process development for fabricating 0.1 μm InGaAs/InAlAs/InP High Electron Mobility Transistor (HEMT) MMICs on 100 mm InP substrates. Successful development of this process will further reduce costs for InP HEMT MMICs and rival those of GaAs-based HEMT MMICs, including GaAs-based metamorphic HEMT technology, with superior performan...

متن کامل

High-Reliability Deep Submicron GaAs Pseudomorphic HEMT MMIC Amplifiers

High-reliability performance of a Q-band MMIC amplifier fabricated using TRW’s 0.1 μm production AlGaAs/GaAs HEMT process technology is reported. Operating at an accelerated life test conditions of Vds=4.2V and Ids=150mA/mm, two-stage balanced amplifiers were lifetested at threetemperatures (Ta=255 C, Ta=270 C, and Ta=285 C) in air ambient. The activation energy (Ea) is as high as 1.7 eV, achie...

متن کامل

Design of X Band High Power Amplifier MMIC Based on AlGaN/GaN HEMT

In this paper, we have presented an X band high power amplifier based on MMIC (Monolithic Microwave Integrated Circuit) technology for satellite remote sensing systems. We have used GaN HEMT process with 500 nm gate length technology with VD= 40 V and VG= -2 V in class E structure. The proposed two-stage power amplifier provides 25 dB power gain with maximum output power of 49.3 dBm at 10 GHz. ...

متن کامل

Advanced Hemt Mmic Circuits for Sources Millimeter- and Submillimeter-wave Power

This paper focuses on InP-based, HEMT Monolithic Millimeter-wave Integrated Circuit (MMIC) power amplifiers for applications to heterodyne receivers, transmitters, and communications circuits. Recently, we have developed several HEMT MMIC circuits using HRL Laboratories’ 0.1 um InP HEMT technology with unprecedented high frequency performance and output power. Our results include an 80 GHz band...

متن کامل

Advanced Hemt Mmic Circuits for Millimeter- and Submillimeter-wave Power Sources

This paper focuses on InP-based, HEMT Monolithic Millimeter-wave Integrated Circuit (MMIC) power amplifiers for applications to heterodyne receivers, transmitters, and communications circuits. Recently, we have developed several HEMT MMIC circuits using HRL Laboratories' 0.1 um InP HEMT technology with unprecedented high frequency performance and output power. Our results include an 80 GHz band...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001